//This shader file is part of FLAR - Advanced Renderer for Freelancer by Schmackbolzen //If you use the supplied shader files you may not modify them unless you state in them what you changed //and also mention the source or who the author is. //Code based on https://learnopengl.com/PBR/IBL/Specular-IBL #version 330 in vec3 WorldPos; uniform samplerCube environmentMap; uniform float roughness; uniform bool convertToLinear; uniform bool copyOnly; const float PI = 3.14159265359; vec3 ToGammaCorrected(vec3 inColor){ return pow(inColor.rgb,1./vec3(2.2)); } vec3 ToLinear(vec3 inColor){ return pow(inColor,vec3(2.2)); } // ---------------------------------------------------------------------------- float DistributionGGX(vec3 N, vec3 H, float roughness) { float a = roughness*roughness; float a2 = a*a; float NdotH = max(dot(N, H), 0.0); float NdotH2 = NdotH*NdotH; float nom = a2; float denom = (NdotH2 * (a2 - 1.0) + 1.0); denom = PI * denom * denom + 0.0001; return nom / denom; } // ---------------------------------------------------------------------------- // http://holger.dammertz.org/stuff/notes_HammersleyOnHemisphere.html // efficient VanDerCorpus calculation. float RadicalInverse_VdC(uint bits) { bits = (bits << 16u) | (bits >> 16u); bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u); bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u); bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u); bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u); return float(bits) * 2.3283064365386963e-10; // / 0x100000000 } // ---------------------------------------------------------------------------- vec2 Hammersley(uint i, uint N) { return vec2(float(i)/float(N), RadicalInverse_VdC(i)); } // ---------------------------------------------------------------------------- vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness) { float a = roughness*roughness; float phi = 2.0 * PI * Xi.x; float cosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a*a - 1.0) * Xi.y)); float sinTheta = sqrt(1.0 - cosTheta*cosTheta); // from spherical coordinates to cartesian coordinates - halfway vector vec3 H; H.x = cos(phi) * sinTheta; H.y = sin(phi) * sinTheta; H.z = cosTheta; // from tangent-space H vector to world-space sample vector vec3 up = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0); vec3 tangent = normalize(cross(up, N)); vec3 bitangent = cross(N, tangent); vec3 sampleVec = tangent * H.x + bitangent * H.y + N * H.z; return normalize(sampleVec); } // ---------------------------------------------------------------------------- void main() { vec3 N = normalize(WorldPos); // make the simplyfying assumption that V equals R equals the normal vec3 R = N; vec3 V = R; if (!copyOnly) { const uint SAMPLE_COUNT = 1024u; vec3 prefilteredColor = vec3(0.0); float totalWeight = 0.0; for(uint i = 0u; i < SAMPLE_COUNT; ++i) { // generates a sample vector that's biased towards the preferred alignment direction (importance sampling). vec2 Xi = Hammersley(i, SAMPLE_COUNT); vec3 H = ImportanceSampleGGX(Xi, N, roughness); vec3 L = normalize(2.0 * dot(V, H) * H - V); float NdotL = max(dot(N, L), 0.0); if(NdotL > 0.0) { // sample from the environment's mip level based on roughness/pdf float D = DistributionGGX(N, H, roughness); float NdotH = max(dot(N, H), 0.0); float HdotV = max(dot(H, V), 0.0); float pdf = D * NdotH / (4.0 * HdotV + 0.0001); float resolution = 1024.0; // resolution of source cubemap (per face) float saTexel = 4.0 * PI / (6.0 * resolution * resolution); float saSample = 1.0 / (float(SAMPLE_COUNT) * pdf + 0.0001); float mipLevel = roughness == 0.0 ? 0.0 : 0.5 * log2(saSample / saTexel); vec3 texColor=textureLod(environmentMap, L, mipLevel).rgb; if(convertToLinear) texColor=ToLinear(texColor); prefilteredColor += texColor * NdotL; totalWeight += NdotL; } } prefilteredColor = prefilteredColor / totalWeight; gl_FragColor = vec4(ToGammaCorrected(prefilteredColor), 1.0); //gl_FragColor = vec4(prefilteredColor, 1.0); } else gl_FragColor = vec4(textureLod(environmentMap, V, 0).rgb, 1.0); }